Thursday, January 16, 2014

Quantum Entanglement and Bell's Theorem

An article at Wired Magazine discussing the uncertainty principle and quantum entanglement and, more specifically, the experiments that show that there is not some other hidden property inherent in particles that explains quantum entanglement. The author first sets out the two positions:

The first possibility is that using quantum mechanics is like wearing blurred glasses. If we could somehow lift off these glasses, and peek behind the scenes at the fundamental reality, then of course a particle must have some definite position and momentum. After all, it’s a thing in our universe, and the universe must know where the thing is and which way it’s going, even if we don’t know it. According to this point of view, quantum mechanics isn’t a complete description of reality – we’re probing the fineness of nature with a blunt tool, and so we’re bound to miss out on some of the details.

This fits with how everything else in our world works. When I take off my shoes and you see that I’m wearing red socks, you don’t assume that my socks were in a state of undetermined color until we observed them, with some chance that they could have been blue, green, yellow, or pink. That’s crazy talk. Instead, you (correctly) assume that my socks have always been red. So why should a particle be any different? Surely, the properties of things in nature must exist independent of whether we measure them, right?

... On the other hand, it could be that our glasses are perfectly clear, but reality is blurry. According to this point of view, quantum mechanics is a complete description of reality at this level, and things in the universe just don’t have a definite position and momentum. This is the view that most quantum physicists adhere to. It’s not that the tools are blunt, but that reality is inherently nebulous. Unlike the case of my red socks, when you measure where a particle is, it didn’t have a definite position until the moment you measured it. The act of measuring its position forced it into having a definite position.

Now, you might think that this is one of those ‘if-a-tree-falls-in-the-forest’ types of metaphysical questions that can never have a definite answer. However, unlike most philosophical questions, there’s an actual experiment that you can do to settle this debate. What’s more, the experiment has been done, many times. In my view, this is one of the most underappreciated ideas in our popular understanding of physics. The experiment is fairly simple and tremendously profound, because it tells us something deep and surprising about the nature of reality.
The author then outlines experiments that could be done to demonstrate quantum entanglement and prove whether it is a correct view of the universe.

We just went through the argument of a groundbreaking result in quantum mechanics known as Bell’s theorem. The black boxes don’t really flash red and green lights, but in the details that matter they match real experiments that measure the polarization of entangled photons.

Bell’s theorem draws a line in the sand between the strange quantum world and the familiar classical world that we know and love. It proves that hidden variable theories like the kind that Einstein and his buddies came up with simply aren’t true1. In its place is quantum mechanics, complete with its particles that can be entangled across vast distances. When you perturb the quantum state of one of these entangled particles, you instantaneously also perturb the other one, no matter where in the universe it is.

It’s comforting to think that we could explain away the strangeness of quantum mechanics if we imagined everyday particles with little invisible gears in them, or invisible stamps, or a hidden notebook, or something – some hidden variables that we don’t have access to – and these hidden variables store the “real” position and momentum and other details about the particle. It’s comforting to think that, at a fundamental level, reality behaves classically, and that our incomplete theory doesn’t allow us to peek into this hidden register. But Bell’s theorem robs us of this comfort. Reality is blurry, and we just have to get used to that fact.
 Read the whole thing.

No comments:

Post a Comment