Translate

Saturday, August 24, 2013

Advances Toward Bendable Electronics

MIT Technology Review reports on advances with printing graphene circuits on plastic--important for developing flexible electronics. From the article:

Akinwande’s group is focused on practical applications for graphene, one-atom-thick sheets of carbon with exceptional mechanical and electrical properties. 
Graphene transistors and circuits, made on rigid surfaces using conventional chip-making techniques, have broken electronic speed records. But when researchers have tried to take advantage of graphene’s toughness and extreme flexibility in bendable devices built on plastic, the switching speed takes a dive. That’s a problem because for flexible electronics to become economical, says Akinwande, they must be printed over larger areas, like newspaper. 
This week in the journal ACS Nano, Akinwande and University of Texas materials scientist Rodney Ruoff describe record-breaking 25-gigahertz graphene transistors printed on flexible plastic. Communications circuits have to be able to switch on and off billions of times per second—2.4 gigahertz for Bluetooth, and about 1 gigahertz for cellular communications. To really work for practical applications, the transistors in these circuits have to be rated about 10 times faster than that, says Akinwande. The University of Texas graphene transistors make the cut. 
... The graphene transistors are not only speedy but robust. The devices still work after being soaked in water, and they’re flexible enough to be folded up. “As you make [electronics] thinner, the mechanical properties get better and better,” says Javey. “And graphene is the thinnest material you can have.” 
Akinwande is now working with industry partners, including glass maker Corning of New York and 3M of Saint Paul, Minnesota, to demonstrate printed graphene circuits on a larger, more practical scale. And the group is currently designing a printer for continuously manufacturing graphene circuits. “All the building blocks are done,” says Akinwande. He says the circuits could be manufacturable in five to 10 years. 

No comments:

Post a Comment